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OPTIMAL VALUE DIFFERENTIAL STAB:1i.ITY BOUNDS
UNDER THE MANGASARIAN-FROMOVI'TZ
CONSTRAINT QUALIFICATION ‘i

by !‘

Anthony V. Fia-co

1. Introduction
The first- and second-order variation cf the optimal value of a

general nonlinear program under quite arbitrary parametric perturba- ‘:

tions has been investigated by Hogan [15]), Armacost and Fiacco [1,2,3],

Fiacco [9]), and Fiacco and McCormick [11]. In [2] the optimal value

function is shown, under strong conditions, to be twice continuously

differentiable, with respect to the problem parameters, with its !

parameter gradient (Hessian) equal to the gradient (Hessian) of the

Lagrangian of the problem. Armacost and Fiacco [1] have also obtained

first- and second~order expressions for changes in the optimal value

function as a function of right-hand side periurbations. y
A rumber of results relating to the differential stability of

the optimal value function have also been obtained, generally associ-

ated with the existence of directional derivatives or bounds on the

directional derivative limit quotient. Danskin [6,7) provided one of

the earliest characterizations of the differential stability of the H

optimai value function of a mathematical program. Addressing the
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problem minimize f(x,c) subject to xt§, S some topologica: space, '
€ in Ek, Danskin derived conditions under which the directional de-
rivative of f* exists and also determined its representation. This

result huas wide applicability in the sense that the constiaint space,

S, can be any compact topological space. Howeve:r, the result is re-

stricted to a constraint set that does not vary with the parameter

———

€. For the special case in which § is defined »y inequalities in-
volving & parameter, gi(x,e) >0 fori=1,...,m, where £ is convex
and the g, are concave on S, Hogan {15) has given conditions that imply

that the directional derivative of f* existe and is finite in all

PRI N,

directions.
{

For programs without equality constrairts, Rockafellar [19]) has
shown that, under certain second-order conditions, the optimal value

function satisfies a stability of degree two. Under this stability

property, bounds on the directional derivative of f* can be derived.
For convex programming problems, Gol'stein [14] has shown that a saddle
point condition is satisfied by the directicnal derivative of f¥*, :
Gauvin and Tolle [13], not assuming convexity, but limiting their
analysis to right-hand side perturbations, extended the work of
Gol'stein and provide sharp upper and lower bounds on the directional
derivativz limit quotient of f*, assuming the Mangasarian-Fromovitz
constraint qualification and without requiring the existence of
second-order conditions. Optimal value sensitivity results for infinite
dimensional programs have recently been obtaianed by Maurer [17,18].

The purpose of this paper is to refine and continue the preliminary

but incomplete study conducted by Fiacco and Futzler [10] that extends
the results of Gauvin and Tolle [13]) to the general inequality constrained
mathematical program in which a parameter appears arbitrarily in the

constraints and the objective function, We complete this extension and
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obtain, for the general inequality-equality protlen, the Gauvin-Tolle
upper and lower bounds on the directional derivative limit quotient of
the optimal value function. In a paper essentially 'simultaneous to [10],
Gauvin and Dubeau [12] have independently obtained the difrerential
bounds under the same assumptions invoked here but using a different
method of proof.

Sections 1 through 3, through Theorem 3.7, and Sections 5 and 6 are

taken more or less intact from [10] and are reported here for completeness.

Theorem 4.1 and Corollary 4.2 were also obtained in [10]. The remaining
results, Lemmas 3.8, 3.10, 4.3, 4.4 and Theorems 3.9, 3.11, 4.6, 4.8, and
4.9, extend the reduction approach introduced in [10] and complete the

development of the theory for the general inecuality-equality constrained

parametric problem.

2. Notation and Definitions

In this paper we shall be concerned witli mathematical programs

of the form:

minx f(x,e) P(e)

s.t. g (x,€) > 0 (i=1,...,m), hj(x,e) =0 (j=1,...,p),

where xeE" is the vector of decision variables, € is a parameter vector

k

in E°, and the functions f, 8 and h, are once continuously differen-

J
tiable on E" x Ek The feasible region of problem P(e) will be denoted

R(e) and the set of solutions S(e). The m-v:ctor whose components
are gi(x,e), i=1,...,m, and the p-vector whose components are

hj(x,c), yj=1,...,p, will be denoted by g(x,e) and h(x,e), respec-

tively.

Following usual conventions the gradient, with respect to x, of

k

1
a once differentiable real-valued function f:E"xE »E 1is denoted

fo(x,c) and is taken to be the row vector [bf(x,c)laxl,...,af(x,c)/ax“].

-3 -
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I1f g(<,e) is a vector—-valued function, g:Eank+Em, whose components

gi(x,e) are differentiable in x, then ng(x,e) denotes the m x n Jacobian
matrix of g whose ith row is given by ngi(x,a), i=1,...,m. The trans~
pose of the Jacobian ng(x,s) will be denoted V;g(x,e). Differentiation }
with respect to the vector ¢ is denoted in a completely analogous fashion.

Transposition of vectors and matrices is denoted by a prime. ,

The Lagrangian for P(e) will be written

m
L{X,u,w,e) = f(x,€) ~ i;i uigi(x,s) + jii mjhj(x,e),

and the sct of Kuhn-Tucker vectors corresponding to the decision vec~

tor x will be given by

m
K(x,e) = {(u,w)eE pr:VxL(x,u,w,e) =0, u,

i >0, pigi(x,e) =0, i=1,...,m}.

Writing a solution vector as a function of the parameter €, the index
set for inequality constraints which are bindiug at a solution x(e) is
denoted bty B(e) = {i:gi(x(s),e) = 0}. Finally, the optimal value

function will be defined as
f*(e) = min {£f(x,e):xeR(e)}.

Throughout this paper we shall make use of the well known
Mangasarian-Fromovitz Constraint Qualification (MFCQ) which holds at ; i

a point xcR(e) if:

~ N
1) there exists a vector YeE such that

V. 8,(x,€) ¥ > 0 for i such that g;(x,e) = 0 and (2.1)

Vxh (x,e) ¥ =0 for j=1,...,p; and (2.2)

3

-4 -
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i1) the gradients Vxhj(x,s), j=1,...,p, arc linearly

independent.

We will have occasion to make use of various continuity properties ;
for both real-valued functions and point-to-set maps. There are several
related definitions of the indicated properties. The ones most suited
to ou: purpose follow. The reader interested “‘n more detail is referred

to Berge [5] and Hogan [16].

Definition 2.1. Let ¢ be a real-valued function defined on the space X.

i) ¢ is said to be lower semicontinuous (lsc) at a point xoex if

lim 600 > 0(x ).
X“*Xo

ii) ¢ is said to be upper semicontinuoas (usc) at a point xoex if

Tim ¢(x) < 9(x ).

X*X
(o]

Using these definitions, one readily sees that a real-valued
function ¢ is continuous at a point if and only if it is both upper

and lower semi~continuous at that point.

Definition 2.2. Let ¢:X*Y be a point-to-set mapping and let {sn}c:x,

with €n+€ in X as nveo,

1) ¢ is said to be open at a point € of X if, for each Xe$(€),

{ there exists a value ng and a sequence {xn} CY with xnc¢(€n)

for n >n and x -x.
- 0 n

! ii) ¢ is said to be closed at a point € of X if x e¢(e ) and xn*i

together imply that xed(€).

-5 -
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Definitsion 2.3. A point-to-set mapping ¢:X°Y is said to be uniformly

compact near a point ¢ of X if the closure of the set U¢{e)_ 1is com-
e in N{g)

pact for some neighborhood N(e) of €.

In Section 3 we apply a reduction of variables technique to P(€)
which transforms that program to a locally equivalent program involving
only inequality constraints. This approach simplifies the derivation
of intcrmediate results which are needed to derive the bounds on the
directional derivative limit quotients of f*(e) given in Section 4.

A demonstration of the results is provided in the example of Section 5.

Section 6 concludes with a few remarks concerning related results.

3. Reduction of Variables

In P(e), if the rank of the Jacobian, Vxh, with respect to x of
the (first n) equality constraints in a neighborhood of a solution is
equal to n, then the given solution is completely determined as a
solution of the system of equations hj(x,e) =0, j=1,...,n, and the
(locaily unique) solution, x(€), of this system near € = 0 is then
completely characterized by the usual implicit function theorem. We are
here interested in the less structured situation and hence assume that
the rank of Vxh is less than n. Since we shall be making use of MFCQ,
this -:ntails the assumption that the number p »f equality cemstraints is
less than n. If there are no equality constraints in a particular for-
mulation of P(g), simply suppress reference to h in the following devel-
opment. Otherwise, we take advantage of the linear independence assump-

tion to «<liminate the equalities, again using an implicit function

theorcem.,




T-435

n-p
IEE .

necessary, if h(x*,c*) = 0 and MFCQ holds at x%, then we mayv assume that

Let x = (xD,xI), where xDE:Ep and x Reordering variables if

: Vx h is ncnsingular at (x*,e*). Then the usual implicit function theo-
: D

- k }
rem resulis hold: there exists an open set N*CE" PxE '

containing
(x?,E*) such that the system of equations h(xD,xI,E) = (0 can be solved

for Xp in terms of X and € for any (xI,e) in N*, Furthermore, this

representation is unique, the resulting function x_ = xD(xI,E) is contin-

D

uous, and xg = xD(xf,e*). Thus, in N*, the system h(xD,xI,e) = 0 is J

1 satisfied identically by the function x_ = xD(xI,E). Under our addi-

D

tional ascsumption that h is once continuously differentiable in Xp and

£, xD(xI,e) is also once continuously differentiable in Xy and €,
Applying this result to P(€) at x*, since we have ﬁ(xI,E) = i
h[xD(xI,g),xI,e] = 0 in N*, this problem can ke reduced locally to one

involving only inequality constraints:

mianf(xI,E)

s.t. éi(xl,e) >0 (i=1,...,m), P(c)
and (xI,e)e N*,

where f(xI,e) z f[xD(xI,E),xI,E] and gi(xl,e) = gi[xD(xI,e),xI,E] for
i=l,...,m, and where the minimization is now performed over the n-p di-
mensional vector Xy The programs P and P are locally equivalent, for

(x,e) in a neighborhood T* of (x*,0) and for (xI,e) in N*, in the sense

that the point x(C)EEn, with (x(€),€) in T* and x(c) = (xD(E),xI(E)),

satisfies the Karush-Kuhn-Tucker first-order necessary conditions for an

optimum of P(c) if and only if the point xI(e), with (xI(e),&)E:N*,

-7 -
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satisf'es those conditions for P(r), where xD(xu,E) is as g.ven above.

Furthermore, in the given neighborhoods, x(g) = (xD(xI(C),ei,xI(e)) is a

R

local solution of P(g€) if and only if xI(€) is a local solution of 5(6).

We fivst observe that the Mangasarian-Fromovitz constrsint qualifi-

cation for P(¢) is inherited by the reduced problem 5(6). For simplic-
ity in notation, and without loss of generality, assume that €* = 0, and
assume that the components of x have been relabcled so that x = (xD,xI)
and\& h(x*,xf,O) is nonsingular. The next result is easily obtained by

D
invoking MFCQ at (x,€)

(x*,0), partitioning the MFCQ vector y = (§D,§I)

in conformance with x* (xﬁ,xf), differentiating h and g with respect to

X and applying the assumptions. Corresponding to the notation for P(t),
we denote the feasible region, solution set aud optimal value of ﬁ(e) by
ﬁ(e), §(L) and E*(e), respectively. Other corresponding problem constit-

uents will be similarly denoted.

Lemma 3.1. If g,hecl, then MFCQ holds at x*€R(0), the feasible region of
P(0), with y = (?D,ﬁl)s E" the associated vector, where ?De P and
¥ € E"P, if and only if MFCQ holds at the point x% € R(0), the feasible

region of P(0), with vector §1.

Proof. Suppose that MFCQ holds for P(0) at (x*,O) = (x;,x;,O) with
¥ = (¥,,¥,) the associated vector. Writing V h as [V h:V h] y We
D*71 X Xy

see that (2.2) can be expressed as:

* - * -
Vth(x ,0) b + Vth(x ,0) v, = 0. (3.1)
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*
Since we have assumed that V_ h(x ,0) is nonsingular, we cen solve
for ?b in (3.1) and obtain:
~ ® -1 * ~
¥ = -[%xnh(x ,Oi] Vth(x ,0) ¥;. (3.2)

Now, denoting the inequality constraints of P(0) by §i, i.e.,
E& = gi(xD(xI’O)’xI’o)’ i=1,...,m, by differentiating with respect

to xI we obtain:

V.8 =V _g.V + V. b
in xDi xIxD xll

or

v - ve V. % l. (3.3)

v Ei = V.8 T Vi (3.4)

But h(xD(xI,O),xI,O) = 0 so that
Vth(xD(xI,O).xI,O) VxIxD + Vth(xD(xI,O),xI,O) =0,
and since Vth(xD(xI,O),xI,O) is nonsingular, we obtain:

1

. Vi T 7 | T PO (0% 200 )

Vth(xD(xI,O),xI,O).




L EPUR. MR Y T T T, I, ST — e =

I'-415

Substituring this last expression in (3.4) we have:

-1

5 ¥ = -[v_ h(x (x,0),%x.,0)] © V_ h(x (x.,0),x.,0) | ~
vxlg1 Vi = V.8 X, *p**1 I xp DU 1 ¥y
I
and from (3.2) we see that at (x;,O)
~ o~ ?b ~
Vngi 17 ngl ?i B ngi yr- (3.5)

Thus, ly (2.1) it follows that V_ ¥, §. > 0.
Xy i1

In [13], Gauvin and Tolle established that the set of Kuhn-

Tucker multipliers associated with a solution, x*, of P(0) is non-
empty, compact and convex if and only if MFCQ is satisfied at x*.

That resul: cnables us to establish in Theorem 3.2, a necessary link
between a directional derivative, with respect to the decision vari-
able Xrs of the objective function at an optimal point and a direc-
tional derivative of the Lagrangian taken with respect to the parameter
€. It is this relationship which eventually leads to the upper and
lower bounds on the directional derivative 1limit quotients which are
derived in the next section.

We now obtain several perturbation results for problem ﬁ(e). These
do not depend on the variable-reduction derivation of ﬁ(e) and are ap-
plicable to any inequality constrained problem having the indicated
structure. Hence, unless otherwise stipulated, we assume in the follow-
ing that a problem of form §(€) is given, without reference to P(g).

The next two theorems are crucial in obtaining the sharp bounds on

the optimal value directional derivative limit quotient. They show that,

- 10 -
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at a local minimum where MFCQ holds, there exists a direction (in En-p)
in which the directional derivative of the otjective function yields

that portion of the bound attributable to the censtraint perturbation.

Theorem 3.7. If the conditions of MFCQ are saticfied for some

x_€5(0), tnen, for any direction zcEk, there exists a vector ;cEﬂ-p

I
satisfying:
1) —vgi(il,o) y < vegial,o)z for icB(0), and (3.6)
1) VE(x,,0) y = max [-p'ch;(iI.O)z]. (3.7
ut:'fi(il.o)

Proof. Given stk, consider the following linear program:

max (—p'veg(il ,0)z ]

! s.t. u'Vé(?:I,O) Vf(:_cI,O)

ui§1(§1,0) =0 (i1=1,...,m)

My 2 0 (i=1,...,m).

The dual of this program is given by:

min VF(E&,O) y
y,v

s.t. vﬁi(il,o) y + ’31(’_‘1’0)"1 > -vegi&I,o)z (i=1,...,m)

ysEn—P, \A unrestricted.

e ~———ee
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Since MFCQ is assumed to hold at (;I’O)' from [13] we have that
f(;[,o) is nonempty, compact and convex. Thus, the primal problem
is bounded and feasible. By the duality thenrem of linear pro-
gramming, the dual program has a solution, (v,v), and hence there
exists a vector y satisfying (3.6) and (3.7).

In the next two theorems we show first that, along any ray ema-
nating from ¢ = 0, P(¢) hae points of fcasib.lity near € = 0, and
second, that the existence of feasible points is guaranteed not only
along rays but in a full neighborhood of « = ) . [n obtaining the fol-
lowing results associated with Problem P(r), it is assumed that the

analysis is confined to (xI,E) in N%x,

Theorem 3.3. If MFCQ holds at ;165(0) then, for any unit vector zEEk
and any ¢ > O, g(ii + B(;-&dyl),ﬁz) > 0 for B positive and sufficiently

near zero, where y is any vector satisfying (3.6) and 91 satisfies MFCQ.

Proof. Lect z be any unit vector in F¥ and cousider firse the case
in which the constraint gi(xl,z) 0 is binding at (iI,O). fxpanding

gj(;' +€(;+-hy[),dz) about the point (§I,0) we obtain:
si(x[+-ﬁ(y4'0yl),62) = BV g (x + By + 6y,),GZ)(y + 69,)

+ R V(gi(;l,t'ﬁz)z

U

oLV g (xp +EB(y+0y ) ,Bu)y + V g (x,t'82)2]
+ 86 Vg O+ 3Gy + &y, B2) y

where t,t'c(0,1) and t = t(8), t' = t'(B).

- 12 -
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Now, by (2.1), ‘v‘xgi(il,owl = a, > 0. Thus, there exists 8' >0
such that for all «: (0,8'],
_ _ . 3ai
V.8 (x; ¥ tB(y+5y1),BZ)y1 e
From (3.6) it follows that for B sufficiently small,
8a,
i

4

V.8 (k + tB(y+y ), Bz)y + Vg (i .t'B2)z > -

Thus, Jor B positive and near zero we have:

) - (Sai 3ai B‘Sai
g (x + B(y+dy),B2) > B\- =)+ B\——~] = ——>0.

Finally, if gi(il,O) > 0, since each gi is jointly continuous in
x and ., i. follows that, for any unit vector ztEk, and any & > O,

gi(; + L(§+6y[),82) 0 for | near zero.

I

Theorem 3.4. [f MFCQ is satisfied at ;Iré(o) and if Fk*’O, then, given

any 8> 0, there exists [ »0 and a vector y such that
’ k y

_ . j
glx, + Hk.(y+(\yl), €, ) > 0 for large j, where {z‘.k'} g{ck}, € F
3 j i J
||vk ||zk o7y >z, y satisfies (3.6) for z=2, and 91 is given by
j i i

MFCQ.
Proof. If {Ek‘} Q{tk} and bl

i j
for {t.. | aud any y by taking Bk =0 for every j. Suppose €

- 0 for c¢very j, the conclusion follows

K $0 for

i b k|
every j. Define f_ = llck || and g, =/ l]Lk ||. Then, relabeling
i B i i i

z, if necessary, we can assume there exists z such that z, +z, Lety

J 3

satisfy (3.6) for the vector z. Then, from Thenrem 3.3 and the continu-

k

ity of g it follows that g(x, + 8 (y+ 38y ),e, )
I k, 1 k
i i
g(x, + 1 (y+ GVI), B, 2 ) >0 for large j.

! k k. "k,
J U

- 13 -
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By Theorem 3.4, the satisfaction of the Manpasarian-Fromovitz constraint
qualification at a solution point iI of P(0) is enough to guarantee

the existence of fe: sible points for P(e) near % One might suspect

C
that there exist points feasible to P(e) which zre also feasible to
P(0). This is indeed the case as the next theorea implies (see the
statement immediately following the proof of Theorem 3.5). We shall

need Theorem 3.5 in obtaining one of the key results in Theorem 4.3.

Theoren 3.5. Let Bn + ot in El, let z be any unit vector in Ek, and
let § > 0. If x?éi(enz), with x? -+ §Ie§(0), and if the conditions of
n

MFCQ are satisfied at ;I’ then x. + Bn(;4-6§1)c§(0) for n sufficiently

1

large, where y satisfies (3.6) with z replaced by -z, and §I is given

by the constraint qualification.

P
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Proof. Consider first the case that i¢B(). E ading gi(xT + Bn(§-+fyl),0)

n
about the point (xl,an), we obtain:

| ]
(x] + 8 (y+ §),0) = g (x],6 2) + LV (x] + g (7 + 55 = ey '
LI RRN PSR A TR LSRN TR L L Ve R (Y 5y ),0) (y + 0F ) J
- f ! o n a ~ v r
B, VB Ot B Sy ).ttt ), |
i g
|
where t,t'c(0,1), t = t(i), t' = G ). TF, for n large, |
XT + ﬁn(; *‘WT){E(O)’ since “? is fcasible for ?Kﬁnz), it nust ’i

be that

, "ll . = . - . ] G \'n ) - - ' N
;n«gi(hl + by (vt yl),O)(y+‘5yI) .n“gi(..I + r.(_\+o‘\])‘t ,ng)ﬁ. (3.8)

n
Dividing by Bn in (3.10}) and taking the limit as n > o0 we have
Vg, (% Vo Sy ) <V g (X

By (xO) (v + by ) - Vg (x,0)z.

But tihis contradicts (3.6) with z replaced bv -z i1 (3.6), since N - O
amd by MEGY .gitil,O;y[ 0.
-~ n —
1f, on the othe. hand. 1i£B(0), gi(xl + Bn(y"”yl),o) > 0 for
1 -
Jarge n by the continuity of g; and the fact that x; 4 X, and ﬁn » 0.

1 - - -
It may be intercsting to note, that by taking x; = x]4 Bn(y + éh)

for each n in the hypothesis of Theorem 3.5, then Theorems
3.4 aud 1.5 together imply that R(+) and K(0) have points in common '
for ¢« near 0.
et "t b a ¢ losed subset of N* whose interior contains (x%,O) and
e note by P4 ) the Problem P(r), where N* is replaced by M. The feasible
resrion of PG ) will be denoted by R(L), the solution set by §(;), the

- 0 . .
cptimal value he £5(G ), ete, Denote by M~ the intcrior of M. '

- 15 -
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W2 now show that the optimal value functions F*({) and {*(c) of
EP———- ~
P(e) and (), respectively, are continuous near ¢+ = 0 unde- the given

assumptions. This is proved by the author under more general assumptions
|8], the details being repeated here to make this naper complete. This
result wiil be needed in the proof of Theorem 4.5. The continuity of
f*(¢) was also shown by Gauvin and Dubeau [12], under the same assump-

tions ¢s those given here.

Lemma 3.6, If R(0) is nonempty and R(g) is uniformly compact for € near

zero, then R(c) is a closed mapping at € = 0,

Proof. Let Cn + 0 in Ek, and (for n sufficiently large), let x¥€§(€n)°
Thus, for n sufficiently large, §(x2,€n) 2 0 and (x?,en)EM. By the uni-

n,
form compactness of R(g), there exists a convergent subsequence {xIJ} of

n, _

{x;} with xIJ ad ;I for some Xq in the closure of UR(E) for € near 0.
n,

But by the continuity of g, we must have 0 < lim g(xIJ,En ) = §(§I,0),

3500
and of course (EI,O)CM. Thus ileﬁ(O) and we have ithat R(g) is closed at

€ = 0.

Theorem 3.7. If R(0) is nonempty, R(e) is uniformly compact for ¢ near
zero, and if there exists §I€§(0) such that (%I,O)(;MO and the conditions

of MFCQ hold at x then f*(e) is continuous at - = O.

19

Proof. Let sn<>0 in Ek be such that lim ?*(s) = lim f*(en). Clearly,

_ e+0 n>0 _
since R(En) # ¢ for n sufficiently large (Theorem 3.4), S(Cn)#<b for

n

large n. Hence, assuming n is large enough, there exists X]

ES(En). By
the uniform compactness of R(g), the sequence {x;} admits a convergent

n, _
subsequence {x[J}. Let X; denote the limit of tha: subsequence. From

Lemma 3.6, 2(¢) is a closed mapping at £=0, so ;I(R(O). Thus,

- 16 -




T-435

n, ~ = -
lim £%(e) = lim F*(c_ ) = lim E(xIJ,c ) = £(x;,0) > F*(0),
€0 e T e %

and we see that f*(£) is lsc at € = 0,
Now let §>0, l:t §I be given by MFCQ for ;l’ and select en-*O such ;
that lim f*(e) = lim f*(en). From Theorem 3.4 we know Bn +0 and y

€0 n>o j

such that §I + Bn (v + 6§I)e§(€n ) for j large, where y satisfies
3 h|

(3.6) for some vector z. Hence, |

Tim * =_ Fa Tim f(x v- 37 = f(x = -*

lim f*(¢) lim f (en ) < lim f(xI + Bn.(y +6;I),en ) f(x,0) £fx(0).

€0 €0 g e ] 3
j

Thus ?*(E) is also usc at € = 0 and we may conclude that f*(e) is con-

tinuous at '€ = 0,

We should mentioa that the continuity of f#* requires only the con-
tinuity of f in addition to the once (joint) <ontinuous differentiabil-
ity of the constraints.

The continuity of f*(e) at € = 0 leads tc a simple proof of the
continuity of f*(e), the optimal value of P(ce). This is of intrinsic

interest and will also be used in deriving the directional derivative

limit quotient lower bound in the sequel. We first note the following
result, the first part being an easy consequence of the continuity of
the problem functions that is proved precisely aralogously to Lemma 3.6.

The proof that f*(e) is lsc at € = 0 precisely parallels the first part

of the proof of Theorem 3.7 that shows that f*(e) is lsc.

Lemma 3. 8. If R(0) is nonempty and R(€) is uniformly compact for

£ near 0, then R(g) is a closed mapping and f*(c) is lsc at € = 0.

- 17 -
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Theorem 3.9. If R(0) is nonempty, R(E) is uniformly compa:t for € near

0, and if MFCQ holds at some x*¢S(0), then f*(e) is continunus at € = 0.

Proof. We eliminate the equalities of P(€) at x* for (xI,EU in a neigh-~
borhood N* of (xf,O), where x* = (xs,xf), using the previou:ly defined i
variable reduction transformation, constructing problems of the form

E(e) and P(€). We know that xfeg(O) and that MFCO holds at xf (Lemma =

3.1). Also, the uniform compactness of R(E) near £ 0 implies the

uniform compactness cf R(€) near € = O.

Clearly, f*(g) < E*(E) < E*(E) and since £*(0) f(x*,0) = f(xf,O),

we conclude that f*(C) = E*(O) = f*(0), which alsc implies that x¥€§(0).

The assumpiions of Theorem 3.7 are satisfied, hence f*(e) is continuous a
at 0. These relationships imply that limg_)0 fx(e) < lim€+0 fx(e) = ]

£%(0) = £%(0); i.e., f*(g) is usc at 0. Since i*(e) is also lsc at € =

0 (Lemma 3.8 ), the conclusion follows.

4. Bounds on the Parametric Variation of the Optimal Value Function

In this section we are concerned with the directional derivative
of the optimal value function for P(e). We first derive upper and
lower bounds on the cdirectional derivative limit quotient of *(e)
for P(¢) and then obtain the corresponding bounds for P(e). These
results extend the work of Gauvin and Tolle [13], who obtained the
analogous results for the case in which the perturbation is restricted
to the right-hand side of the constraints.

As above, we will, without loss of generality, focus attention

on the parameter value € = 0. For zcEk, the directional dervivative

- 18 -
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of E*(e) at € = 0 in the direction z is defined tc be:

£*(8z) - ¥*(0)

8 (4.1)

D £*(0) = 1im
Z
g0+

providing that the limit exists.

Theorem 4.1. If, for P(e), MFCQ holds for some ilcg(O), then, for

any direc:ion zeEk,

% _ Rk — -
lim sup £~ (Bz) £7(0) < max v L(xl,u,O)z. (4.2) 3

g0t B T uek(x;,0)

and ?Ibe the vector given by the constraint qualification, and é
let y satisfy eqs. (3.6) and (3.7). Then, for any stk,

iI + B(§'F5§I)€K(BZ) for B pear 0, so that

£ (x, +8(y+65.) ,Rz) - £(kx,,0) x
lim su lim, sup L IB - - 2 (x

£%(Bz)-F*(0)
, Sup T N 'EE(XI’

£>0 P B>0

tA

0)

Vf(xI,O)(y + 6yI) + Vef(xI,O)z.

Since this inequality is satisfied for arbitrary &§ > 0 we can

take the limit as § + 0 and obtain:

lim, su
g0

£*(Bz) - £*(0) 2= on= o~
P B < Vf(xI,O)y + ch(xI,O)z.

The conclusion now follows by applying (3.7):
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f _ % - - .o
lim, sap f*(Bz) 5 £%€0) _max [—u'VPg(xI,O) + Vef(xI,O)]z

60 ' HEK (x¥,0)

= _max Vgi(il,b,O)z.
HER (x%,0)

Corollary 4.2. Under the hypotheses of the previous theorem, if MFCQ

holds at each point xI€§(O), then

lim, sup £*(Bz) - £%(0) <

" B < inf _max v i(xI,u,O)z. (4.3)
g0 xICS(O) UEK(xI,O)

€

Proof. The result follows directly by applying the previous theorem at

each point of §(O).

To obtain a lower bound on the directional derivative limit quo-
tient, we use MFCQ and the following result which is well known and fol-

lows easily from the results obtained in the last section.

Lemma 4.3. If R(0) # ¢, R(e) is uniformly compact near € = 0, and f*(g)

is continuous at € = 0, then S(e) is closed at € = 0.

n
I
? - xf. By Lemma 3.6, R(g) is closed at € = 0, so xfeﬁ(O). Since

f*x(c) is continuous at € = 0, it follows that lim f*(c ) = 1lim E(xn,e ) =
n I’n
nrec n-—)OO

Proof. Suppose € > 0 as n > * and suppose x e§(€n) is such that

X
£(x3,0) = £%(0), hence x#€5(0).

The next lemma is an immediate consequence of this result and

Theorem 3.7.

- 20 -
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Lemma 4.4. Suppose Yy T 0 and the assumptions of Theorem 3.7 hold.

Then, for n large, tiiere exists x¥s§(€n) and all limit points of {x?}

are in §(0).

Proof. The fact that S(e) # 0 for near O follows from the fact that
ﬁ(en) # ¢ (Theorem 3.4) and compact for n large (since R(g) is uniformly
compact for € near 0) and since f(xl,sn) is continuous in N*, From
Theorem 3.7, we know that f*(e) is continuous at £ = 0. The conclusion

then follows from the previous lemma.

e . k . o
Definition 4.5. For any given vector zeE , an infimal sequence x; of

the directional derivative limit quotient of f*(€) is defined as {xg}

such that xgeg(ﬁnz) and

= = £(x",B z) - f(x%,0)
Iim inf f*(Bz) ~ £%(0) 1lim I n g I .

g0t B noo n

Theorem 4.6. Suppose z is any given vector in Ek. Suppose the assump-
tions of Theorem 3.7 are satisfied and suppose that ;I is a 1limit point
of an infimal sequence {x?} as defined in Definition 4.5, relative to the

given vector z. Then,

lim inf £2€82) = () R R CERTHOFS (4.4)

g0t T ueK(xp,0)
Proof. Let Bn -+ O+. We already know from Lemma 4.3 that there exists
x¥e§(8nz) for n large, and all limit points of {x?} are in S(0). Also,
by definition, an infimal sequence as defined above always exists and

there must exist at least one limit point in S(0) of this sequence.

- 21 -
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Relabeling if necessary, our assumptions allow us to conclude a bit more,
i.e., that x? i §I€§(O)(\N*, where {x?} is an infimal sequence relative
to the given vector z.

Since MFCQ holds at x,, Theorem 3.5 assures that x; + Bn(§+6§1)€§(0)

I’

for n sufficiently large. It follows that

f(x?,ﬂnz) - f(§1,0)

lim inf f*(Bz) E £%(0) lim
B_’O"’ n>e .
~ n ~ . n -~
- f(xI,an) - f(xli-Bn(y+5yI),0)
L B
n-o n

= lim [-VE(o )(3+55.) + V f(a )z]
I ( n 1 € n z

by the mean value theorem, where an is the usual convex combination (in

En—p><Ek) of the two arguments in the preceding quotient. Thus,

. o E*(Bz) - F*(0) e ~ = o
11 f lim V_f - Vf +§
E 12 5 ! m Ve, (an)z (an)(y yI)

Y

Ve E(x[,0)z = VE(x,0) (y+éy ).

Using Theorem 3.2 and noting that § was chosen as any positive value, we

conclude that

lim inf 22(BZ) ; £*(0) VEE(RI,O)z - _max 'V 8(x;,0)2]
g0t HEK(x;,0)

v

_min V€£(§I,u,0)z.
HEK(x,,0)

Corollary 4.7. Under the hypotheses of the previous theorem

lim inf f*(8z) ; ££€0) > inf _min Vei(xI,U,O)z. (4.5)
g0t x€5(0) ueK(x;,0)
- 22 -
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By the reduction of variables that was applied earlier, in a neigh-

* i =
borhood of (xI,O), with x (xD(xI,E),xI),

f(x,€) - u'g(x,e) + w'h(x,€)

L(x,u,w,€)

f(XD(XI!E)!Xlie) = u'g(xD(xI)e)’xISE) + w'h(xD(XI,€),xI,€)

. s -
Fxp,e) - WEGpE) = Lixp,u,0),

0. Thus

with £(x,6) = E(x},€) , g(x,€) = §(x},€), and h(x,€) = h(x ,€)
L(X,U,w,€) = i(xI,u,e) in a neighborhood of (x(x},0),x¥,0) = (x*,0) and,

with w determined by w' = -(V_ f - pu'V_ g)[V h}—l, it follows easily
*p » %

that Vei = VEL and the linear program appearing in the proof of Theorem
3.2 and involved in the preceding bounds can readily be formulated analo-
gously as a locally equivalent problem in terms of L(x,H,w,£).

We now utilize the above results obtained for P(c) and P(€) to ob-

tain bounds for the optimal value directional derivative quotiert of P(g).

Theorem 4.8. 1f MFCQ holds at some x*€S(0), then for any direction zeEk,

lim sup f*(Bz) é'f*(o)

g0t

max v L(X*’U,w>0)z
(u,w)ek(x*,0)

Proof. Apply the variable reduction transformation at x* = (xs,xf)

as in the previous construction to obtain a problem of the form 5(6),
defined for (xI,e) in a neighborhood N* of (xf,O). Since f*(g) <

f%(c) and £*(0) = f*(0), we have that

£*(Bz) - £*(0) fx(Bz) - £*(0)
B B

lim sup

< 1lim sup
g-0*

3 a0+
and the conclusion is an immediate consequence of Theorem 4.1, having
expressed the bound in (4.2) in terms of the original variables by way

of the variable reduction transformation.

- 23 -
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Theorem 4.9. If R(0) # ¢, R(€) is uniformly compact ncar € = 0, and

MFCQ holds for each x£S(0), then for any direction zCEk,

* -
lim inf £X(B2) - £*(0) > min V L(x*,1,0,0)z

g0t B (u,w)eK(x*,0)

holds for some x*e€S(0).

Proof. Given any zeEn, consider x"¢ S(an) such that

n
Lim 1o 2B2) = 2@ T ’an)e‘ FGr,0)

g0t B e n

Since R(e) is uniformly compact, there exists a subsequence, which we
again denote by {x"}, and a vector x* such that x > x*. By Lemma 3.8,
R(e) is ciosed and, by Theorem 3.9, f*(c) is continuous at € = 0. It
follows (as in the proof of Lemma 4.3) that S{e¢) is closed at 0, so

x*cS(0).

We now apply the variable reduction transformation at x* =
(xﬁ,x%), following the usual construction, and obtain a problem of the
form E(E), defined for (xI,E) in a neighborhood N* of (xf,O). We also
define the reduced problem P(c), i.e., problem 5(8) with M, a closed
subset of N* whose interior contains (xf,O), replacing N*,

Noting that in N*, f*(B z) = E*(an) and f*{0) = f*(0), it is
easily verified that the assumptions of Theorem 4.6 are satisfied and

we also have

Lim inf £2B2) = £2€0) .0 g0 EX(B2) - EX(0)
ot 8 g0t 6

from which the conclusion follows, expressing the right hand side of
(4.4) in terms of the original variables via the variable reduction

transformation.

- 24 -
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Clearly Corollaries 4.2 and 4.7 immediately extend to f*(:) as
well, using these results. Thus, all of the results obtained above for
5(5) and ?(e) can be immediately generalized to P(e). For completeness,

we state these results as the next theorem. ' !
3

Theorem 4.10. 1f, for P(c), R(0) is nonempty and MFCQ holds at each

x€S(0), then for any unit vector zeEk,

lim sup f*(Bz) 3_ £x(0)

g0t

< inf max VEL(x,u,w,O)z, (4.6)
xeS(0) (u,w)eK(x,0)

and if R(e) is uniformly compact for ¢ near € = 0, then

L4 _ ¢%
1lim inf E—*ﬁz)s £~ipl_i inf min V_L(x,u,w,0)z. “.7)
g0t xeS(0) (p,u)eK(x,0) -

Moreover, we are able to obtain the existence of the directional
derivative of f* at ¢ = 0 by assuming, as Gauvin and Tolle {13] did
for right-hand side programs, the linear independence of the binding

constraint gradients at each point x*eS(0).

Corollary 4.1]. Assume R(0) is nonempty and R(e) is uniformly compact

near €¢ = 0 1f the gradients, taken with respect to x, of the con-
straints binding at x* are linearly independent for each x*¢5(0),

then for any unit vector zeEk, sz*(o) exists and is given by

D £*(0) = inf  V L(x,u(x),w(x),0)z,
xe$(0) ©

where (n(x),w(x)) is the unique multiplier vector associated with x.

- 25 -
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Proof. At any point x*¢S(0), the linear independence of the binding
constraint gradients implies the uniqueness of the Kuhn-Tucker multi-
pliers corresponding to x*. Inequalities (4.6) and (4.7) now combine

to yield the desired result.

e ——

Note that im Corollary 4.11 if P(c) contains no inequality con-

straints, we could replace inf by min since p would not appear and o
w =-v rv h-1 which is continuous in x, making VeLz a continuous ;i

D

function of x minimized over S(0), a compact set.

We may also show that two of the observations made by Gauvip and §

Tolle [13]) about sz*(o) for right-hand side programs apply to P(e)

as well. First if sz*(O) = - D_zf*(O), then
1
j inf  max V_L(x,H,0,0)z = sup _ min V L(x,1,,0)z. (4.8) 1
: xe8(0) (u,w)eK{x,0) xeS(0) {(u,u)eK(x,0)
Thus, if, for all unit vectors stk, sz*(O) = - D_Zf*(O) and ﬁ
)
Dyi*(O) = inf  max VL(x,1,0,0)z, 4.9)
” xeS(0) (u,w)eK(x,0) ﬁ

then (4.8) provides a necessary condition for the existence of Vef*(O).
In addition, if (4.8) holds for every unit vector ngk and if x*eS(0)
is the unique solution of P(0), then its associated Kuhn-Tucker multi-

plier vector is unique.

We next apply the results derived above to a particular class

of programs. We show in the next theorem that if P(e) is a convex

program in x for € near ¢ = 0, i.e., if f(x,c) and —gi(x,c),

- 26 ~
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i=l,...,m, are convex and if hj(x,e), j=1,...,p, are affine in x, then
sz*(O) exists and is given by (4.9). To prove thic result, we will re-
strict our attention to convex programs of the form 5(8), with (xI,e) no

longer constrained to be in a specified neighborhood N*. We ace able to

e ————

do this since the functions hj(x,e) are assumed to be affine in x and
f(x) and the —gi(x,e) are taken to be convex in x, from which it easily
follows that the variable reduction transformation applies globally, and

further, f(xq,€) and the -g,.(x._,€) are convex in x. for i=1,...,m.
1 iVI I ’

Theorem 4.12. In P(e), let f(x,e) and ~gi(x,e), i=1,...,m be con-
vex and let hj(x,s), j=1,...,p be affine in x. If R(0) is non-
empty, R(e) 1s uniformly compact near ¢ = 0, and MFCQ holds for each
x*cS(O), then, for any unit vector erk,

D_£*(0) = inf max VEL(x,u,w,O)z. (4.10)
z xeS(0) (u,w)eK(x,0) '

Proof. Without loss of generality, as indicated, we will prove this re-

sult for ﬁ(e), with the set N* not present. For convenience, the nota-

tion is somewhat simplified by dropping the subscript I in the argument. 7
Note that the assumptions imply that R(e) = {xlgi(x,e)gih i=1,...,m} is
a convex uniformly compact set near € = 0,

Let x*c§(0) and xneg(an) with Bn + 0% in such a way that

o BT f(x_,8 2z) ~ £(x*,0)
lim inf £ (8z) £ (0) = lim nn 8 .

g0t 8 n-+o0 n

and X, > x* as in the proof of Theorem 4.9. For all u*ci(x*,O),
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L * = ~ P ~
L(x ,u",B 2) £(x,8 2) - ux'g(x .8 2) < £(x ,8 2),

where the inequality follows from the non-negativity of both u* and
E(xn,an). Thus, since T(x*,p*,0) = f(x*,O), )
f(x .8 2) - £(x*,0) T ,u%,8 2) - TG*,u*,0)

lim 8 > lim 8 . :
n»>o0 n n->oo n x

i
¥

Now, as a result.of the Kuhn-Tucker conditiorns and the convexity

assumptions, x* is a global minimizer of 'f:(x,u*,O), s0

. T(x u",8,2) - T(x*,0%,0) T(x ,u%,8,2) - T(x ,1*,0)
n-+o0 Bn - n--00 Bn

T(xn,u*,O) + BnVEL(Xn,U*,tBni’)Z - L(xn,u*,o)
= lim B —
n>o0 n

by the mean value theorem, where te(0,1). Thus

f(x .8 2) - £ (x*,0) ~
]_j_m n B _>_ lim VCL(xn,N*.CB 2)3,
>0 n n>on n

and, passing to the limit on the right, we are able to conclude that

f(xn,an) - £(x*,0) N
1im ; > ¥ L(xx,h%,0)z. (4.11)

n>00 n ’

Thus, for some x*tg(O), since (4.11) holds for each v*t’l\’(x*,()), and

recalling from [13) that K(x*,0) is compuct,

.* Ll -.* CY
1im inf f (BZ)B £7€0) > max ‘ Lx*,.,0)z,

g0+ T ueK(x*,0)
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from wvhich we see that

Pt 3 =k
1im inf (Bz)s‘ L0 ;5 jag  max VLOG,0)z2.
g0t xeS(0) ueK(x*,0)

Combining this result with that obtained in Corollary 4.2 we conclude
that
D £*(0) = inf  max V L(x,1,0)z.
z xe3(0) neK(x,0)

For convex P(c), (4.10) now follows by an inversion of the reduction

of variables process applied to yield 3(&).

5. Example

We use the example stated below to demonstrate some of the theoret-
ical results obtained in the previous sections. For the given problem
we show that the conditions of MFCQ hold at every point ia S(¢) and we
give the form of the vector satisfying the constraiat qualification. We
obtain the form of the vector satisfying (2.1) and (2.2) for 5(6), and

show that the bounds stated in (4.6) and (4.7) are attained.

Consider the program

min £X) P(¢)
2 2
s.t. g(x,e) = - (xl-e) - (XZ-Z) +4>0
h(x,c) = ~ 3 + Xy + ¢ = 0.

The solution of this program is easily determined to pe xI = x; + ¢ with
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=)0 0 , and if € = 0, x

2 €<0

*

5 can be any value in the iaterval [0,2]. (5.1)

N ¥

Applying the reduction of variables technique outlinod earlier, with

Xy =X and Ky = Xy, P(c) is transformed into the equivalent program

min e(x2+e) F(e)

2
s.t. E(x,,e) = - xg - (xy-2)" + 4 >0

whose solution is given by (5.1).
For both P(¢) and P(c), the optimal value function can be written

as
. €2 €>0
£7(e) = 9 . (5.2)
€“+2¢ € <0
We see that f* is continuous for all values of €, but it is not differ-
entiable at ¢ = 0., It does, however, have directional derivatives at
€ = 0 which are given by
0 z =1

D £*(0) = . (5.3)
z -2 z = -1

To illustrate Lemma 3.1, we first determine the general form
of the vector, ¥, associated with points xe€S(g) at which MFCQ is

satisfied. The constraint gradients of P(g) are

L}

ve(x,e) = [-2(x;-c), -2(x,=2)], and

(-1,1].

i

vh(x,¢c)
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Applying (2.1) and (2.2) at a point x* = (xI,x;)eS(c), with y =
(yl,yz), we require that Vg(x*,e)y = —2(xit—t.)y1 - 2(x§-2)y2 >0 if

g(x*,0) = 0, and
* ~
Vh(x",e) § = -y + Yy = 0.
Thus, for any value of €, since g(x,€) is binding only if x§ = 0,2,
¥ can havz the form
(a,a) x; =0

F={®k,») 0<x; <2, (5.4)

(c,c) x; =2

for any real numbers a,b,c with a > 0, b # 0, and ¢ < 0. We
can also conclude that MFCQ holds at every solution of P(e).

In a similar fashion, we see that, for 3Ke),
Vg(xz,e) = -2x2 - 2(x2—2),

so applying (2.1) we find that the vector ?& in the reduced

program takes the same form as the second component of ¥ in (5.4).
Now

VI.(x,i,w,e) = [e + 2u(xl—£) ~ W, 2u(x2-2)

*
so that at a solution x*¢S(0) we must have 2ux1 -w

(u,m)cK(x*,O). Then
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VCL(x*,u.w.O) = x; >
and, with S(0) = {xcEZ: X17Xys xzc[O,Z]},
0 z =1
min max VgL(X,U,w,O)Z = . (5.5)
xeS(0) (u,w)eK(x,0) -2 z=-1

Comparing (5.3) with (5.5) we see that (4.6) holds with equality.
Now, coasidering inequality (4.7), we first note that for any

neighborhood N(0) of OeEl, the closure of the set

{xcEZ: X = (x2+a, x2), x26[0,2], € in N(0)} is compact so R(e) 1s

uniformly compact for ¢ near ¢ = 0. We calculate

min min VEL(x,u,w,O)z = R
xeS(0) (u,w)eK(x,0) -2 z=-=1
and find that (4.7) also holds with equality.
The above results could have been anticipated from (4.10), since
the conditions of Theorem 4.12 hold for this example.
An example is given in [13) which illustrates that (4.6) and

(4.7) need rot hold with equality.

6. Related Results

Inspection of the derivation of (4.6) and (4.7) reveals that the
bounding term in these expressions, namely VCL(x,u,w,O)z, can be
viewed as the sum of two distinct expressions, one resulting from the
variation of the objective function of P(c) with respect to the

parameter, the other deriving from the dcpendence of the region of
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feasibility on the parameter. The first of these terms is V f(x,0)z
and is eusily seen to result directly from the manipulation of the
limit quotients in the proofs of Theorems 4.1 and 4.6. Tre second
component, [-u'Vég(x,O) + m'Véh(x,E)]z, results from the zssumption that
MFCQ holds at points of S(0). The conditions of MFCQ are invoked to
enable us te conclude (3.7), as well as the existence of
points feasible to P(c¢) in a neighborhood of ¢ = 0. Having made
these observations, we are now able to discuss the relationships
between the bounds provided here and results previously ohtained by
others. As we shall see, in particular instances in which the direc-
tional derivative of f* is shown to exist, it is expressed as either
a function of Vef or a function ol Veg and Veh, or a combination of
all of these terms, depending, as one would suspect, on where in
P(c) the parameter appears.

Danskin [6,7] provided a now well-kncwn characterization of the

directional derivative of the optimal value function of P{e) in the

case that the constraints are independent of a parameter. Under the

NI S

conditions that the region of feasibility, R(0), is compact, and
f(x,¢) and ng(x,e) are continuous at € = 0, Danskin showed that
sz*(O) = min Vef(x,O)z. (6.1)
xeS(0)
Relating our hypotheses to Danskin's construct, we first note the
cquivalence of our assumption of the uniform compactness of R(e) for
¢ near € = 0, and the assumption that the feasible region is compact

if the constraints of P(¢) do not depend on e, To see this, one need
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only consider that, in this case, R(¢) > R(0) for all e end apply
Definition 2.3. In addition, when the feasible region it independent
of ¢, our development need not consider the perturbed point

x* + 8(y + §¥), but may be restricted to the point x¥¢S(C). The proofs
of Corollaries 4.2 and 4.7 remain valid in this case by simply

suppressing all reference to the dependence of the constraints on ¢

* *

and by considering the unperturbed point x* instead of x* + B(y + 6¥).

One is then led to conclude that, analogous to (4.6) and (4.7),

£%(Bz) - £*(0)

lim sup 5 < min Voi(x,0)z, and (6.2)
g-ot x€S(0)
N _ g%
tim inf 82 L0 5 pin v £(x,002, (6.3)
grot xeS(0)

for any unit vector stk. Thus it follows that, under the stated
conditions, namely the compactness of R and the continuity of f(x,e)
and Vef(x,c) at ¢ = 0, our results are consistent with those of
Danskin in that they verify the existence of sz*(o) and show (from
(6.2) and (6.2)) that it can be expressed as in (6.1).

Gauvin zad Tolle [13]) showed, for programs with right-hand side

perturbations, i.e., for programs of the form

min f(x)
P'(¢)
s.t. gi(x) > ey (i=1,...,m),
hj(x) = €m+j (3=1,...,p),

that atthough the directional derivative of £* may not exist, its
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only consider that, in this case, R(e) = R(0) for all € £nd apply
Definition 2.3. In addition, when the feasible region ic independent
of €, our development need not consider the perturbed point

x* + B(y + 6), but may be restricted to the puint x*¢eS(C). The proofs
of Corollaries 4.2 aﬁd 4.7 remain valid in this case by simply
suppressing all reference to the dependence of the constraints on ¢

and by considering the unperturbed point x* instead of x* + B(y + §%).

One is then led to conclude that, analogous to (4.6) and (4.7),

* *
lim sup £ (BZ)B“ £ < nin V_£(x,002, and (6.2)
got xeS(0)
koo N ok
lim jof L0822 L) 5 nin v 002, (6.3)
B0+ xeS(0)

for any unit vector zeEk. Thus it follows that, under the stated
conditions, namely the compactness of R and the continuity of £(x,e€)
and st(x,e) at ¢ = 0, our results are consistent with those of
Danskin in that they verify the existence of sz*(o) and show (from
(6.2) and (6.3)) that it can be expressed as in (6.1).

Gauvin zand Tolle [13] showed, for programs with right-hand side

perturbations, i.e., for programs of the form

min f(x) ©
P'(c
(i=1l,...,m),

v
™

s.t. gi(x) >

t
™

hj(x) = mHj (j=l,---,P),

that although the directional derivative of f* may not exist, its
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limit quotient can be bounded. In particular, they concluded that
if MFCQ holds at each element of S(0) and if R(e) is uniformly compact

for € near ¢ = 0, the following inequalities are satisfied:

* _ f% o P |

lim sup £ (BZ)B £7(0) < inf max ( 3 Mgz, - 3y wj zm+j)' (6.4) |
g0t xeS(0) (u,w)eK(x,0)‘'i=1 j=1

and

% - T ek m p
lim inf & (BZ)B £7(0) inf min ( Z:uizi - S zm+.>
g0+ xeS(0) (u,w)eK(x,0) ‘i=1 j=1 3 J

|v

. (6.5)

Now, from (4.6) and (4.7) we see that the bounds we have given for
the general program P(e) reduce to those in (6.4) and (6.5) respec-
tively for the more restrictive perturbations appearing in P'(e).

In the case of convex programs, the existence of sz*(O) assured
by Theorem 4.12 and its expression as (4.10), corresponds under
slightly different assumptions, with results achieved by Gol'stein
[14] and Hogan |15). Theorem4.12is a direct extension to the general
perturbed mathematical program of a result given by Gauvin and Tolle
{13] for right-hand side programs.

A. Auslender [4] has extended the results of Gauvin and Tolle
j13] to problems involving non-differentiable functions. In
particular, the bounds noted by (6.4) and (6.5) are obtained for 2
right-hand side programs in which the problem functions are locally
Lipschitz and those defining the equality constraints are continuously

differentiable.
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Subsequent to the completion of this paper, it came to our attention
that Geraud Fontanie ["Locally Lipschitz Functionc and Nondifferentiable
Programming,'" M.S. Thesis, Technical Report 80-3, Curriculum in opera-

tions Research and Systems Analysis, University of North Carolina at

Chapel Hill, 1980] extended the Gauvin-Tolle bounds [13] to a generally
perturbed Lipschitz program, using the reduction technique described

here.
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